Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance

نویسندگان

  • Nazrin Abdullayeva
  • Mehmet Sankir
چکیده

By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm-2 observed for the OEIP with the electrical conductivities of 54 S cm-1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm-2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent progress on exploring exceptionally high and anisotropic H+/OH– ion conduction in two-dimensional materials

Ion conducting membranes/electrolytes have been employed extensively in some important industrial and biological systems, especially in fuel cells, water electrolyzers, gas separation, sensors and biological selective ion transport, acting as one of the core components and sometimes directly determining the device performance. However, the traditional polymeric proton exchange membranes (PEMs)/...

متن کامل

Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells

In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determined according to peak area integration. Ion transport properties (ionic conductivity, ion exchang...

متن کامل

An organic electronic biomimetic neuron enables auto-regulated neuromodulation.

Current therapies for neurological disorders are based on traditional medication and electric stimulation. Here, we present an organic electronic biomimetic neuron, with the capacity to precisely intervene with the underlying malfunctioning signalling pathway using endogenous substances. The fundamental function of neurons, defined as chemical-to-electrical-to-chemical signal transduction, is a...

متن کامل

Electrical Conductivity Studies of 1-Butyl-3-methylimidazolium Salicylate as an Active Pharmaceutical Ingredient Ionic Liquid (API-IL) in Aqueous Amino Acids Solutions

The molar conductivity data of 1-butyl-3-methylimidazolium salicylate, [BMIm][Sal] as an active pharmaceutical ingredient ionic liquid (API-IL) have been determined in water and aqueous solutions of amino acids, glycine and L-alanine at T= (288.15 to 318.15) K. The molar conductivity data were analyzed by low concentration Chemical Model (lcCM) and limiting molar conductivities ( ), ion associa...

متن کامل

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017